In triangle abc prove that c-b cosa/b-c cosa=cosb/cosc
Answers
Answered by
9
To prove --->
c - b CosA / b - c CosA = CosB / CosC
Proof --->
We know that from projection rule
c = b CosA + a CosB
b = a CosC + c CosA
Now
LHS= c - bCosA / b - c CosA
Putting value of c and b
b CosA + a CosB- b CosA
= ---------------------------------------
a CosC + c CosA - c CosA
+ bCosA and - bCosA cancel out from numerator and cCosA and - cCosA cancel out from denominator so we get
= a CosB / a CosC
a cancel out from numerator and denominator
= CosB / CosC = RHS
Additional information-->
(1) Sin rule
a /SinA = b / SinB = c / SinC
(2) Cos rule
CosA =( b² + c² - a²) / 2 bc
CosB = (a² + c² - b²) / 2 ac
CosC = (a² + b² - c²) / 2 ab
Similar questions