In triangle ABC, prove that cot( A/2)+cot( B/2)+cot(C/2)=(a+b+c/b+c-a)cot(A/2)
Answers
Answer:
hope this may help you
Answer:
Step-by-step explanation:
Given: A ΔABC having its side as AB, BC, CA and having angles as ∠A, ∠B and ∠C.
A/2 + B/2 = pi/2 - C/2
Cot(A/2 + B/2) = Cot(pi/2 - C/2)
A/2 + B/2 = π/2 − C/2
cot(A/2 + B/2) = cot(π/2 − C/2) = tanC/2 = 1/cotC/2
Apply cot(x + y) = cotxcoty − 1/cotx + coty
= tanC/2 = 1/Cot(c/2)
Apply cot(x + y) = (Cotxcoty - 1)/(cotx + coty)
cot A/2 + cot B/2 + cot c/2 = a + b + c/b + c - a cot (B/2) = a + b + c/ a + b - c cot(C/2)
Hence, cot( A/2)+cot( B/2)+cot(C/2)=(a+b+c/b+c-a)cot(A/2)
Learn all these formula's hope it will help you .
If none of the angles A, B and (A ± B) is an odd multiple of π/2, then
- tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
- tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
If none of the angles A, B and (A ± B) is a multiple of π, then
- cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
- cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
Some additional formulas for sum and product of angles:
- cos(A+B) cos(A–B)=cos2A–sin2B=cos2B–sin2A
- sin(A+B) sin(A–B) = sin2A–sin2B=cos2B–cos2A
- sinA+sinB = 2 sin (A+B)/2 cos (A-B)/2
Formulas for twice of the angles:
- sin2A = 2sinA cosA = [2tan A /(1+tan2A)]
- cos2A = cos2A–sin2A = 1–2sin2A = 2cos2A–1= [(1-tan2A)/(1+tan2A)]
- tan 2A = (2 tan A)/(1-tan2A)
Formulas for thrice of the angles:
- sin3A = 3sinA – 4sin3A
- cos3A = 4cos3A – 3cosA
- tan3A = [3tanA–tan3A]/[1−3tan2A]
#SPJ2