Math, asked by aryan021212, 4 days ago

In triangle ABC, Prove that if altitudes on three sides are equal, then triangle is equilateral.​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Let assume that AD, BE and CF be the altitudes drawn from A, B and C on BC, AC and AB respectively intersecting BC, AC and AB at D, E, F respectively.

Now, it is given that, altitudes on three sides are equal.

So, AD = BE = CF = h (say)

Now,

\rm \: Area _{(\triangle\:ABC)} = \dfrac{1}{2}  \times AD \times BC = \dfrac{1}{2}  \times h \times BC -  -  - (1) \\

Also,

\rm \: Area _{(\triangle\:ABC)} = \dfrac{1}{2}  \times BE \times AC =\dfrac{1}{2}  \times h \times AC  -  -  - (2) \\

Also,

\rm \: Area _{(\triangle\:ABC)} = \dfrac{1}{2}  \times CF \times AB = \dfrac{1}{2}  \times h \times AB -  -  - (3) \\

Now, from equation (1), (2) and (3), we get

\rm \: \dfrac{1}{2} \times h \times \: AB =  \dfrac{1}{2} \times h \times BC  = \dfrac{1}{2} \times h \times AC  \\

\rm\implies \:AB = BC = AC \\

\rm\implies \: \triangle\:ABC \: is \: an \: equilateral \: triangle. \\

\rule{190pt}{2pt}

Additional Information :-

\color{green}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Answered by talpadadilip417
1

Step-by-step explanation:

Given : In △ ABC , AD, BE and CF are the altitudes drawn from A, B and C on BC, CA and AB respectively. and A D = B E = C F

To prove : △ ABC is an equilateral triangle.

Proof : In △ BEC and △ BFC , we have

Hyp. BE = CF (given)

Side BC = BC (common)

 \\ \therefore \:  \:  \Delta BEC \cong \triangle BFC  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{(RHS axiom of congrency)}

 \text{\( \therefore \angle C =\angle B \) \quad (c.p.c.t.)}

 \text{\( \therefore A B = A C \quad \) (sides opposite to equal angles)...(i)}

Similarly, in right △ AFC and △ ADC, we have

\begin{array}{rlr} & \text { Hyp. } A C=A C & \text { (common) } \\ & C F=A D & \text { (given) } \\ \therefore & \triangle A F C \cong \triangle A D C \quad \text { (R.H.S. axiom of congruency) } \\ \therefore & \angle A=\angle C \\ \therefore & B C=A B \quad \text { (sides opposite to equal angles) ...(ii) } \\ & \text { from (i) and (ii), we have } \\ & A B=B C=C A\end{array}

Hence,△ABC is an equilateral triangle.

Attachments:
Similar questions