in triangle ABC ,prove that r1+r2+r3-r=4R
Answers
Given : in triangle ABC r₁ + r₂ + r₃ - r = 4R
To Find : Prove
Solution:
Δ is the area of triangle
s = semi perimeter
a , b , c are the side length of triangle
r₁ , r₂ and r₃ are ex radii
r = inradius
R = circumradius
r₁ = Δ /(s - a)
r₂ = Δ /(s - b)
r₃ = Δ /(s - c)
r = Δ/s
r₁ + r₂ + r₃ - r = 4R
LHS
= Δ /(s - a) + Δ /(s - b) + Δ /(s - c) - Δ /s
= Δ [ {(s - b) + (s - a)}/{(s-a)(s-b)} + (s - s + c)/s(s-c)]
= Δ [ {2s - (a + b))}/{(s-a)(s-b)} + (c)/s(s-c)]
2s = a + b + c => 2s - (a + b) = c
= Δ [ c/{(s-a)(s-b)} + (c)/s(s-c)]
= Δc [ { (s)(s-c) + (s -a)(s-b) } / (s(s-a)(s-b)(s-c))]
s(s-a)(s-b)(s-c) = Δ²
(s)(s-c) + (s -a)(s-b) = s² - sc +s² - bs - as + ab
= 2s² - s(a + b + c) + ab = 2s² - s(2s) + ab = ab
= Δc [ ab / Δ²]
=abc/Δ
= 4abc/(4Δ)
R = abc/4Δ
= 4R
= RHS
QED
Hence proved
r₁ + r₂ + r₃ - r = 4R
Learn More:
In a given figure,if a,b and c are the length of sides of triangle ABC ...
https://brainly.in/question/11596935