Math, asked by pawankumarmetta11, 1 month ago

In triangle ABC, prove that rri . =(s-b)(s-c) ​

Answers

Answered by sailajpoudel1
1

solution:

Given a+b+c=2s

a+b=2s−c

a+c=2s−b

We know that

cosA=

2bc

b

2

+c

2

−2a

2

2sin

2

(

2

A

)=1−cosA

=1−(

2bc

b

2

+c

2

−a

2

)

=

2bc

a

2

+2bc−(b

2

+c

2

)

2bc

a

2

−(b

2

+c

2

−2bc)

=

2bc

a

2

−(b−c)

2

=

2bc

(a+b−c)(a−b+c)

=

2bc

(2s−c−c)(2s−b−b)

=

2bc

2(s−c)2(s−b)

bc

2(s−b)(s−c)

2sin

2

2

A

=2.

bc

(s−b)(s−c)

2sin

2

2

A

=

bc

(s−b)(s−c)

sin(

2

A

)=

bc

(s−b)(s−c)

Hence proved.

Similar questions