In triangle abc prove that sin a/2+sin b/3-sin c/2=-1+4cos(π-a/4)cos (π-b/4) sin (π-c/4)
Answers
Answered by
0
Answer:
proved
Step-by-step explanation:
sin
2
A
+sin
2
B
+sin
2
C
=2sin
4
A+B
cos
4
A−B
+sin
2
c
=2sin
4
A+B
cos
4
A−B
+1−2sin
2
4
A+B
[∵A+B+C=Π]
[
2
C
=
2
Π
−(
2
A
+
2
B
)]
∴ 1+2sin(
4
Π
−
4
C
)[cos(
4
A−B
)−cos(
2
Π
−(
4
A+B
))]
⇒1+2sin(
4
Π
−
4
C
)2sin(
4
Π
−
4
A
)sin(
4
Π
−
4
B
)
⇒1+4sin
4
Π−C
sin
4
Π−A
sin
4
Π−B
(proved)
Similar questions