Math, asked by varshini17777, 2 months ago

in triangle ABC prove that sin (A+B/2)=cos c/2​

Answers

Answered by allysia
2

Step-by-step explanation:

We have:

 \\\tt  \sin( \dfrac{A+B}{2} )

Since for a traingle

A + B + C = 180°

A + B = 180°-C

Substituting for A+B here,

\\\tt  \sin( \dfrac{180°-C}{2} )  \\ \\\tt = \sin( 90° - \dfrac{C}{2} )

Since,

 \sin( \dfrac{\pi}{2}  - x)  =  \cos(x)

The final answer will be:

\\ \\\tt  \cos(  \dfrac{C}{2} )

Answered by chiggi2k03
0

Given :       There is a triangle ABC

now,

           Sum of all angles of triangle = 180°

⇒              ∠A + ∠B + ∠C = 180°

⇒               ∠A + ∠B = 180° - ∠C

         Multipying both sides by 1/2

⇒              (∠A + ∠B) / 2 = (180° - ∠C) / 2

⇒               (∠A + ∠B) / 2 = 90° - ∠C / 2                            ...(i)

Now taking LHS,

                   sin (∠A + ∠B) / 2

               =  sin (90° - ∠C / 2)

               =  cos ∠C / 2 .                              [∵ sin (90 - ∅) = cos ∅]

              = RHS .

hence proved.

Similar questions