in triangle ABC ,prove that sin ( B - C )/2 = ( b - c )/a × cos A/2
Answers
Answered by
2
Step-by-step explanation:
In a triangle ABC
a. =b. =c. =2R
sinA. sinB. sinC
a=2R sinA;b=2RsinB;c=2R sinC
R. H. S
(b-c)/a×cosA/2
(2RsinB-2R sinC)/2R sinA×cosA/2
sinB-sinC×cosA/2
sin A
sinB-sinC ×cosA/2
sin(180-(B+C))
sinB-sinC×cos(90-(B+C)/2)
sin(B+C)
2 cos((B+C)/2)sin((B-C)/2)×sin((B+C)/2)
2 sin((B+C)/2) cos((B+C)/2)
sin((B-C)/2)=L. H. S
hence proved
pls mark as branliest
Similar questions