Math, asked by Muski1205, 10 months ago

In triangle ABC prove that sinA /sin(A+B)=a/c

Answers

Answered by harendrachoubay
2

\dfrac{\sin A}{\sin(A+B)}=\dfrac{a}{c}, proved.

Step-by-step explanation:

To prove that \dfrac{\sin A}{\sin(A+B)}=\dfrac{a}{c}.

R.H.S. = \dfrac{a}{c}

Using sine rule,

\dfrac{a}{\sin A} =\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k

∴ a = k\sin A, b = k\sin B and c = k\sin C

= \dfrac{a}{c}

= \dfrac{k\sin A}{k\sin C}

∵ A + B + C = 180°

⇒ C = 180° - (A + B)

= \dfrac{\sin A}{\sin (180° - (A + B))}

Using the trigonometric identity,

\sin (180-\theta)=\sin \theta

= \dfrac{\sin A}{\sin(A+B)}

= L.H.S., proved.

Thus, \dfrac{\sin A}{\sin(A+B)}=\dfrac{a}{c}, proved.

Answered by stefangonzalez246
0

\frac{\sin A}{\sin (A+B)} = \frac{a}{c}

Step-by-step explanation:

Given Data

ToProve  - \frac{\sin A}{\sin (A+B)} =   \frac{a}{c} for a triangle ABC

The Formula for Alternative sine rule is

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R

Where, \frac{a}{\sin A} = 2R

then a = 2R sinA -----------> (1)

similarly, \frac{C}{\sin C} = 2R

c = 2R sinC -------------> (2)

on dividing (1) by (2)

\frac{a}{c}=\frac{2 \mathrm{R} \sin A}{2 R \sin C}  -----------> (3)

We know that the trigonometric formula for sin (180 - theta) is equal to sin theta

then sin (180 - C ) = sin C

substitute sin C = sin (180 - C ) in (3)

\frac{a}{c}=\frac{\sin A}{\sin (180-C)}  ------------> (4)

For a triangle , A + B + C = 180

Also, A + B = 180 - C

substitute 180 - C = A + B in  (4)

\frac{a}{c}=\frac{\sin A}{\sin (A+B)}

Hence Proved that  \frac{a}{c}=\frac{\sin A}{\sin (A+B)}

To learn more ...

1. https://brainly.in/question/169507

2. https://brainly.in/question/1171496

Similar questions