in triangle ABC prove that tan B+C/2=cotA/2
Answers
Step-by-step explanation:
tan(
2
∠A+∠C
)=cot(
2
B
)
Step-by-step explanation:
$$\begin{lgathered}We \: know \: that,\\ In \: Triangle \: ABC , \\\angle A + \angle B + \angle C=180\degree\end{lgathered}$$
( Angle sum property )
$$\implies \angle A+\angle C = 180\degree - \angle B$$
Divide both sides by 2 , we get
$$\implies \frac{\angle A+ \angle C}{2}=\frac{180}{2}-\frac{B}{2}$$
$$\implies \frac{\angle A+ \angle C}{2}=90\degree -\frac{B}{2}$$
$$\implies tan\big(\frac{\angle A+ \angle C}{2}\big)=tan\big(90\degree -\frac{B}{2}\big)$$
$$\implies tan\big(\frac{\angle A+ \angle C}{2}\big)= cot(\frac{B}{2})$$
/* Since ,
tan(90° - A) =cotA */
hope it helps you ✨✨✨✨
Please mark it as the brainliest
Answer:
tan B+C/2=cotA/2 sum of angle triangle
tan 180-A / 2 = cot A/2
tan90-A/2 = cot A/2। (tan90- angle = cotangle)
cotA/2= cotA/2