In triangle ABC, Prove that
Answers
Answered by
0
Answer:
mark me brainliest
Step-by-step explanation:
cos2A=1-2sin^2A
<br>
sin^2A=(1-cos2A)/2
<br>
=(1-cos2A)/2+(1-cos2B)/2+sin^2C
<br>
=1+sin^2C-1/2(cos2A+cos2B)
<br>
=1+sin^2C-1/2(2cos(A_B)*cos(A-B))
<br>
=1+sin^2C-cos(A+B)*cos(A-B)
<br>
A+B+C=pi
<br>
A+B=pi-C
<br>
cos(A+B)=cos(pi-C)
<br>
=-cosC
<br>
=1+(1-cos^2C)+cosCcos(A-B)
<br>
=2-cos^2C+cosCcos(A-B)
<br>
-1<=costheta<=1
<br>
-1<=cos(A-B)<=1
<br> LHS<br>
sin^2A+sin^2B+sin^2C<=2-cos^2C+cosC
<br>
=2-(cos^2C-cosC+1/4-1/4)
<br>
=2-(cosC-1/2)^2+1/4
<br>
=2+1/4-(cosC-1/2)^2
<br>
sin^2A+sin^2B+sin^2C<=9/4
Similar questions