Math, asked by lakshmiprasanna13, 1 year ago

in triangle ABC r=1 R=4 ∆=8 then value of ab+bc+ca​

Answers

Answered by nrrjeshu
6

Answer:

x is equal to 81

Step-by-step explanation:

hence by using properties of triangles formulaes we can solve this

Attachments:
Answered by slicergiza
4

The value of ab+ bc + ca is 81

Step-by-step explanation:

In a triangle ABC,

Inradius formula is,

r=\frac{\text{Area of the triangle}}{\text{Semi perimeter}}

While,

Circumcentre formula,

R=\frac{AB\times BC\times CA}{4\times \text{ Area of the triangle}}

If Area,  ∆=8 square unit, r = 1 unit, R = 4 unit,

a = BC, b = AC and c = AB,

Semi perimeter of the circle = s

From first formula,

\implies 1 =\frac{8}{s}

\implies s=8

\implies \frac{a+b+c}{2}=8

\implies a+b+c=16              ............(1),

From second formula,

4 =\frac{abc}{32}

\implies abc = 128             ............(2),

Now, by the heron's formula,

Δ² = s(s-a)(s-b)(s-c)

64 = 8(8-a)(8-b)(8-c)

8 = (8-a)(8-b)(8-c)

8=512-64b-64a+8ab-64c+8bc+8ac-abc

8 = 512 - 64(a+b+c) + 8(ab+bc+ca)-abc

By substituting values,

8=512 - 64(16) + 8(ab+bc+ca)-128

8= 512 - 1024 + 8(ab+bc+ca)-128

8=-640 + 8(ab + bc+ca)

8+640 = 8(ab+bc+ca)

648=8(ab+bc+ca)

\implies ab+bc+ca=81

#Learn more:

Find the coordinates of the circumcenter of triangle:

https://brainly.in/question/1508266

Similar questions