Math, asked by kistamgarilaxmi11, 8 months ago

In triangle ABC,Right angled at A,if AB=5cm,BC=13,Find sinB, cosB, tanB.​

Answers

Answered by karthikbathina28
0

Step-by-step explanation:

i think it will helpful for u

Attachments:
Answered by MoodyCloud
3

Given:-

  • BC of triangle ABC is 13 cm.
  • AB of triangle ABC is 5 cm.

To find:-

  • Value of sin B , cos B and tan B.

Solution:-

 \bigstar \sf \: sin \:  \theta =  \dfrac{Perpendicular}{Hypotenuse}

 \sf \: sin \: B =  \dfrac{AC}{BC}

  • We do not have AC. So, by Pythagoras theorem we will find AC

Pythagoras theorem is,

(Base)² + (Perpendicular)² = (Hypotenuse)²

Hypotenuse = BC = 13 cm

Base = AB = 5 cm

Perpendicular = AC = ?

Put all values in Pythagoras theorem,

 \implies \sf  {(AB)}^{2}  +  {(AC)}^{2} =   {(BC)}^{2}

 \implies \sf  {(5)}^{2}  +  {(AC)}^{2} =  {(13)}^{2}

 \implies \sf 25 +  {(AC)}^{2}  = 169

 \implies \sf  {(AC)}^{2}  = 169 - 25

 \implies \sf  {(AC)}^{2}  = 144

 \implies \sf AC =  \sqrt{144}

 \implies \sf AC = 12

AC is 12 cm.

Therefore,

 \bigstar \sf \: sin \:  \theta =  \dfrac{Perpendicular}{Hypotenuse}

 \sf \: sin \: B =  \dfrac{AC}{BC}

 \large \boxed {\sf \: sin \: B =  \dfrac{12}{13}}

 \bigstar \sf \: cos \:  \theta =  \dfrac{Base}{Hypotenuse}

 \sf \: cos \: B =  \dfrac{AB}{BC}

 \large \boxed {\sf \: cos \: B =  \dfrac{5}{13}}

 \bigstar \sf \: tan \:  \theta =  \dfrac{Perpendicular}{Base}

 \sf \: tan \: B =  \dfrac{AC}{AB}

 \large \boxed {\sf \: tan \: B =  \dfrac{12}{5}}

____________________

More ratio's :

 \bigstar \sf \: cot \:  \theta =  \dfrac{Base}{Perpendicular}

 \bigstar \sf \: sec \:  \theta =  \dfrac{Hypotenuse}{Base}

 \bigstar \sf \: cosec \:  \theta =  \dfrac{Hypotenuse}{Perpendicular}

Attachments:
Similar questions