in triangle ABC right angled at B,angle A =angleC find value of sinA cosC+cosA sinC
Answers
Answered by
5
Answer:
Here's your answer !!
Since ∠ A = ∠ C
It must be an Isosceles Triangle.
So, ∠ A + ∠ B + ∠ C = 180°
= 2 ∠ A + 90° = 180°
= 2 ∠ A = 180° - 90° = 90°
= ∠ A = 90° ÷ 2 = 45 °
=> ∠ A = ∠ C = 45°
So Sin A = Sin 45 = 1 / √2
Sin B = Sin 90 = 1
So Sin A × Sin B = 1 / √2 × 1
= 1 /√2
Cos A = Cos 45 = 1 / √2
Cos B = Cos 90 = 0
So Cos A × Cos B = 1 / √2 × 0
= 0
So Sin A × Sin B + CosA × Cos B = 1 / √2 + 0
= 1 / √2
Hope this helps!!!
Answered by
0
Answer:
The value=1
Step-by-step explanation:
∠B=90°
∠A=∠C
Hyp= AC
Other sides= BC, AB
sinA= BC/AC
cosA=AB/AC
sinC= AB/AC
cosC= BC/AC
Using Pythagoras Theorem
AC²=BC²+AB²
sinA cosC+cosA sinC
=BC/AC*BC/AC +AB/AC*BC/AC
=BC²/AC² +AB²/AC²
=AB²+BC/AC²
=AC²/AC²
=1
Hope it is helpful
Please mark me in brainlist
Similar questions