In triangle ABC, right-angled at B, if tan A = 1/SQRT3 find the value of:
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C
NCERT Class X
Mathematics - Mathematics
Chapter _INTRODUCTION TO
TRIGONOMETRY
Answers
Answered by
3
we know A + B + C = π => π - B = (A+C)
Sin A Cos C + Cos A Sin C = Sin (A + C) = Sin (π - B) = Sin B = sin π/2 = 1
Cos A Cos C - Sin A SIn C = Cos (A + C) = Cos (π - B) = - Cos B = 0
==============================
Tan A = 1/√3 => A = π/6
B = π/2
=> C = π - π/6 - π/2 = π/3
A + C = π/3 + π/6 = π/2
Sin A Cos C + Cos A Sin C = Sin (A + C) = Sin (π/6 + π/3) = Sin π/2 = 1
Cos A Cos C - Sin A Sin C = Cos (A + C) = Cos π/2 = 0
Sin A Cos C + Cos A Sin C = Sin (A + C) = Sin (π - B) = Sin B = sin π/2 = 1
Cos A Cos C - Sin A SIn C = Cos (A + C) = Cos (π - B) = - Cos B = 0
==============================
Tan A = 1/√3 => A = π/6
B = π/2
=> C = π - π/6 - π/2 = π/3
A + C = π/3 + π/6 = π/2
Sin A Cos C + Cos A Sin C = Sin (A + C) = Sin (π/6 + π/3) = Sin π/2 = 1
Cos A Cos C - Sin A Sin C = Cos (A + C) = Cos π/2 = 0
kvnmurty:
click on thanks please
Similar questions