Math, asked by rajaramdhalana24, 12 hours ago

In triangle ABC, right angled at B, If tan A = 4 3 , then the value of cosC is​

Answers

Answered by sanjumkanojiya4
2

Step-by-step explanation:

The value of CosCCosC is \frac{3}{5}

5

3

Step-by-step explanation:

Given:

A triangle ABC right angled at B

tanA=4/3tanA=4/3

we need to find CosCCosC

In a triangle sum of the angles is 180^0180

0

So we get:

\begin{gathered}A+B+C=180^0\\\\A+C=180^0-90^0\\\\A=90^0-C\end{gathered}

A+B+C=180

0

A+C=180

0

−90

0

A=90

0

−C

Applying tan on both sides

\begin{gathered}Tan A=Tan(90^0-C)\\\\\frac{4}{3}=Cot C\\\\Tan C=\frac{4}{3}\\\end{gathered}

TanA=Tan(90

0

−C)

3

4

=CotC

TanC=

3

4

We know that Sec^2\alpha -Tan^2\alpha =1Sec

2

α−Tan

2

α=1

So we get:

\begin{gathered}Sec^2C=1+(\frac{4}{3} )^{2} \\\\Sec^2C=\frac{25}{9}\\\\SecC=\frac{5}{3} \\\\Cos C=\frac{3}{5}\end{gathered}

Sec

2

C=1+(

3

4

)

2

Sec

2

C=

9

25

SecC=

3

5

CosC=

5

3

Similar questions