. In triangle ABC, right angled at B, if tan A = 6/8, then find the value of sin A. cos C + cos A. sin C
Answers
Answered by
1
Answer:
cosA cos C - sinA sin C= cos(a+c)= cos (30+60)=0. diavinad8 and 20 ... In right angled triangle ABC,. tanA= 1/root3 ... And by angle sum property in triangle ABC , we get C=60 degrees.
Answered by
1
Answer:
sinA=3/5, cosC+cosA=9/5, sinC=4/5
Step-by-step explanation:
tanA=6/8
tanA also=P/B
Therefore,
P=6
and B=8
By phythagoras theorem,
H²=B²+P²
H²=(8)²+(6)²
H²=64+36
H²=100
H=√100
H=10
sinA=P/H
sinA=6/10
sinA=3/5
cosC=B/H
cosC=6/10
cosC=3/5
cosA=8/10
cosA=4/5
therefore,
cosC+cosA=3/5+4/5
cosC+cosA=3+4/5
cosC+cosA=9/5
sinC=P/H
sinC=8/10
sinC=4/5
Similar questions