In triangle abc right angled at c if tana =1 by root3 and tanb = root3 show that sina.cosb+ cosa .sinb =1
Answers
Answered by
0
Step-by-step explanation:
Here,
In triangle ABC right angled at C if tanA = 1/√3 and tanB = √3
Then,
tanA = 1/√3 = BC/AC
And, tanB = √3 = AC/BC
Using Pythagoras Theorem,
AB= √(BC²+AC²)
= √{1²+(√3)²}
= √(1+3)
= √4
= 2
Now,
LHS = sinA . cosB + cosA . sinB
= BC/AB . BC/AB + AC/AB . AC/AB
= BC²/AB² + AC²/AB²
= BC²+AC²
AB²
= AB²/AB²
= 1
= RHS
OR,
LHS = sinA . cosB + cosA . sinB
= BC/AB . BC/AB + AC/AB . AC/AB
= BC²/AB² + AC²/AB²
= 1²/2² + (√3)²/2²
= 1/4 + 3/4
= (1+3)/4
= 4/4
= 1
Similar questions