in triangle ABC, right-angled at C , P and Q are points on sides CA and CB respectively , which divides these sides in the ratio 1:2 .Prove that 9[ AQ^ + BP^ ]= 13 AB^
Answers
Answered by
2
Hlo mate your solution
Attachments:
Answered by
1
Given : ΔABC is a right angle at C. P and Q are points on CA and CB respectively.
CP: PA = 2:1 and CQ: QB = 2:1
To prove :
(1) 9AQ2 = 9AC2 + 4BC2
(2) 9BP2 = 9BC2 + 4AC2
(3) 9(AQ2 + BP2) = 13AB2
Proof : In a right angle ΔACQ,
AQ2 = AC2 + CQ2 [ CQ / QB = 2 /1 ,CQ / ( BC – CQ) = 2 / 1,3CQ = 2BC, CQ = 2BC / 3 ]
⇒ AQ2 = AC2 + (2BC / 3)2
⇒ AQ2 = AC2 + 4BC2 / 9
9 AQ2 = 9AC2 + 4BC2 . ---------(1)
Similarly in a right angle ΔBCP we get
9BP2 = 9BC2 + 4AC2 ---------(2)
Adding (1) and (2), we get
⇒ 9AQ2 + 9BP2 = 9AC2 + 4BC2 + 9BC2 + 4AC2
⇒ 9(AQ 2 + BP 2 ) = 13AC 2 + 13BC 2
⇒ 9(AQ 2 + BP 2 ) = 13(AC 2 + BC 2 ) = 13AB 2 (∆ABC is right angle C then AC 2 + BC 2 = AB 2 )
CP: PA = 2:1 and CQ: QB = 2:1
To prove :
(1) 9AQ2 = 9AC2 + 4BC2
(2) 9BP2 = 9BC2 + 4AC2
(3) 9(AQ2 + BP2) = 13AB2
Proof : In a right angle ΔACQ,
AQ2 = AC2 + CQ2 [ CQ / QB = 2 /1 ,CQ / ( BC – CQ) = 2 / 1,3CQ = 2BC, CQ = 2BC / 3 ]
⇒ AQ2 = AC2 + (2BC / 3)2
⇒ AQ2 = AC2 + 4BC2 / 9
9 AQ2 = 9AC2 + 4BC2 . ---------(1)
Similarly in a right angle ΔBCP we get
9BP2 = 9BC2 + 4AC2 ---------(2)
Adding (1) and (2), we get
⇒ 9AQ2 + 9BP2 = 9AC2 + 4BC2 + 9BC2 + 4AC2
⇒ 9(AQ 2 + BP 2 ) = 13AC 2 + 13BC 2
⇒ 9(AQ 2 + BP 2 ) = 13(AC 2 + BC 2 ) = 13AB 2 (∆ABC is right angle C then AC 2 + BC 2 = AB 2 )
priyannsh:
i hope this is helpful for uuu
Similar questions