In triangle ABc seg BD perpendicular side AC
C-D-A. Prove that : AB ² =
that : AB² = BC² + AC² – BC.AC
Answers
Answered by
3
Answer:
In the right angle triangle ABD, we have
AD² = AB² - BD²
In the right angle triangle ACD we have
AD² = AC² - CD²
So AC² - CD² = AB² - BD²
=> AC² = AB² + CD² - BD²
=> = AB² + (CD + BD)* (CD - BD )
= AB² + BC * [(BC - BD) - BD]
= AB² + BC * [ BC - 2 BD ]
= AB² +BC² - 2 BC * BD
Step-by-step explanation:
Similar questions