Math, asked by vanshsheth22, 8 months ago

in triangle ABC, seg DE || side AB, A(quadrilateral ABED)=3A(triangle CDE).show that point D is the mid point of side AC​

Answers

Answered by siddharth909
1

Answer:

Let a,b,c,d,m,n are the position vectors of A,B,C,D,M and N respectively

M and N are the midpoints of t diagonals AC and BD respectively ..... [Given]

∴m=2a+c and n=2b+d

⟹2m=a+c and 2n=b+d ........ (i)

Now, consider AB+AD+CB+CD

                         =(b−a)+(d−a)+(b−c)+(d−c)

                         =2b−2a−2c+2d

                         =2(b+d)−2(a+c)

                         =2(2n)−2(2m)

                         =4n−4m=4(n−m)=4MN

Hence, AB+AD+CB+CD=4MN

Similar questions