in triangle ABC,sigma sin(A-B)/sinAsinB
Answers
Answered by
2
Step-by-step explanation:
In △ABC,A+B+C=π
Given sinA.sin(B−C)=sinCsin(A−B)
⟹sin(π−(B+C))sin(B−C)=sin(π−(A+B))sin(A−B)
⟹sin(B+C)sin(B−C)=sin(A+B)sin(A−B)
⟹sin2B−sin2C=sin2A−sin2B
⟹2sin2B−2sin2C=2sin2A−2sin2B
⟹(1−cos2B)−(1−cos2C)=(1−cos2A)−(1−cos2B)
⟹cos2C−cos2B=cos2B−cos2A
⟹2cos2B=cos2A+cos2C
So cos2A,cos2B,cos2C are in A.P
Similar questions
English,
3 months ago
Math,
3 months ago
Math,
6 months ago
Math,
11 months ago
Social Sciences,
11 months ago