Math, asked by hiren350, 6 months ago

in triangle abc the bisector of angle a intersects BC at D if AB =6 AC=4and BD=3 find DC​

Answers

Answered by dhairyapatel837
3

Answer:

in triangle ABC, AD is the bisector of CA

∴ BD/DC = AB/AC

⇒4/3 = 6/AC

  4AC = 18

AC = 18/4

AC = 9/2

AC = 4.5cm

Guys, hope it helps you

Step-by-step explanation:

Answered by sara122
24

  \\ \huge\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: given \mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

 \\  \large\begin{gathered} \bf \red{in \: a \: traingle} \begin{cases} & \sf{AB  \longrightarrow 6} \\ & \sf{ AC  \longrightarrow 5} \\ & \sf{BD  \longrightarrow 3} \end{cases}\\ \\\end{gathered}  \\

  \\ \huge\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: to \: find\mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

 \large\begin{gathered}\bf \red{in \: a \: traingle} \begin{cases} & \sf{} \\ & \sf{DC \longrightarrow ?} \\ & \sf{ } \end{cases}\\ \\\end{gathered}

  \\  \huge \mathfrak { \underbrace\purple{diagram}} \\

 \large  {\red{\boxed { \tt {\pink see \: \: i n \:the \:  attachment \: }}}}

  \\ \huge\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: solution \mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

As the query said that ∠BAC is bisected by AD and

AD touches BC at D. We have to have DC.

 \\  \\

 \large \tt\blue➦  \frac{AB}{BD}  =  \frac{AC}{DC}  \\  \\   \large \sf(by \: cross \: multiplication⇩)\\  \\ \large \tt\blue➦ AB \times DC = AC \times \: B D \\  \\  \large \sf(putting \: the \: values⇩) \\  \\ \large \tt\blue➦ 6 \times DC = 5 \times 3 \\  \\ \large \tt\blue➦ 6 \times DC = 15 \\  \\ \large \tt\blue➦ DC =  \frac{15}{6}  \\  \\  \large \sf(by \: dividing \frac{15}{6} we \: get) \\  \\ \large \tt\blue➦ DC = 2.5 \\  \\

Attachments:
Similar questions