In triangle ABC the bisector of angle B and angle C meets at point O . Then prove that angle BOC is equal to 90° + angle BAC .
Answers
Answered by
2
∠ABO=∠OBC=∠ABC2∠ABO=∠OBC=∠ABC2
∠ACO=∠OCB=∠ACB2∠ACO=∠OCB=∠ACB2
In△ABC,In△ABC,
∠ABC+∠ACB+∠BAC=180∘∠ABC+∠ACB+∠BAC=180∘
⟹∠ABC+∠ACB=180∘−∠BAC⟹∠ABC+∠ACB=180∘−∠BAC
Dividingbothsidesby2,Dividingbothsidesby2,
⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)⟹∠ABC+∠ACB2=90∘−∠BAC2...(1)
In△BOC,In△BOC,
∠ABC2+∠ACB2+∠BOC=180∘∠ABC2+∠ACB2+∠BOC=180∘
⟹∠ABC+∠ACB2
HOPE IT HELPS YOU
Similar questions