Math, asked by janvigupta9310, 10 months ago

in triangle abc the internal bisector of Angle B and angle C meet at P and the external bisector of Angle B and angle C meet at Q ,prove that angleBPC + BCQ C is equal to 180 degree​

Answers

Answered by sudevnair33
5

∠ACB  and ∠QCB form a linear pair,

So, ∠ACB + ∠QCB = 180º

=> ∠ACB/2 + ∠QCB/2 = 180º /2

=> ∠ACB/2 + ∠QCB/2 = 90º                    

Again since PC and QC are the angle bisectors

=> ∠PCB + ∠BCQ = 90º

=> ∠PCQ = 90º            

Similarlry,

∠PBQ = 90º

In qradrilateral BPCQ,

Sum of all four angles = 360º

=> ∠BPC + ∠PCQ + ∠CQB + ∠QBP = 360º

=> ∠BPC + ∠BQC + 180º = 360º

=> ∠BPC + ∠BQC = 360º - 180º

=> ∠BPC + ∠BQC = 180º

=> ∠P = ∠Q = 90º                 [Since ∠PCQ = ∠PBQ = 90º]

Hope this helps ! Please mark me Brainiest !

Similar questions