Math, asked by Anonymous, 6 months ago

In triangle ABC, the measure of ∠B is 90°, BC=16, and AC=20. Triangle DEF is similar to triangle ABC, where vertices D, E, and Fcorrespond to vertices A, B, and C, respectively, and each side of triangle DEF is 13 the length of the corresponding side of triangle ABC. What is the value of sinF?

Help me with this and please dont spam✌​

Answers

Answered by marshtdmello
0

Answer:

Step-by-step explanation:

Right Triangle ABC has:

AC=20;

BC=16;

AB= √(20^2 -16^2)=√144 = 12;

Angle B = 90 Deg. =>

sin B=sin 90= 1; => sin B / 20 = sin C / 12 ; => 1 / 20 = sin C /12; =>

sin C=12/20 = 0.6;

Triangles ABC and DEF are similar; Angle C = Angle F; and sin C =sin F=0.6;

The value of sin (F) equals 0.6.

Similar questions