Math, asked by zijanupija, 1 year ago

In triangle ABC, the measure of ∠B is 90°, BC=16, and AC=20. Triangle DEF is similar to triangle ABC, where vertices D, E, and F correspond to vertices A, B, and C, respectively, and each side of triangle DEF is 13 the length of the corresponding side of triangle ABC. What is the value of sinF?

Answers

Answered by aagnavaagna
2

ANSWER EXPLANATION: Triangle ABC is a right triangle with its right angle at B. Therefore, AC is the hypotenuse of right triangle ABC, and AB and BC are the legs of right triangle ABC. According to the Pythagorean theorem,

AB=202162=400−256=144=12

Since triangle DEF is similar to triangle ABC, with vertex F corresponding to vertex C, the measure of angle∠F equals the measure of angle∠C. Therefore, sinF=sinC. From the side lengths of triangle ABC,

sinF=oppositesidehypotenuse=ABAC=1220=35

Therefore, sinF=35.

The final answer is 35 or 0.6.

Answered by vovesihato
0

Triangle ABC is a right triangle with its right angle at B. Therefore, AC is the

AB=202162=40


The final answer is 0.6.


Similar questions