Math, asked by masheth69, 2 months ago

In triangle АВС, АВ = Ac
- D - С. ses AF I seg BC
4
Prove:
АB^2-АD^2 =
BD*CD​

Answers

Answered by harshit5645
9

Answer:

Draw AE⊥BC

In △AEB and △AEC, we have

AB=AC

AE=AE [common]

and, ∠b=∠c [because AB=AC]

∴ △AEB≅△AEC

⇒ BE=CE

Since △AED and △ABE are right-angled triangles at E.

Therefore,

AD

2

=AE

2

+DE

2

and AB

2

=AE

2

+BE

2

⇒ AB

2

−AD

2

=BE

2

−DE

2

⇒ AB

2

−AD

2

=(BE+DE)(BE−DE)

⇒ AB

2

−AD

2

=(CE+DE)(BE−DE) [∵BE=CE]

⇒ AB

2

−AD

2

=CD.BD

AB

2

−AD

2

=BD.CD [Hence proved]

Similar questions