Math, asked by Jas200626, 5 months ago

in triangle DEF
seg DG perpendicular to side EF and EG:GF= 1:2
prove that :
Ef²= 3 (DFsquare - DEsquare)

Answers

Answered by amitnrw
3

Given : in triangle DEF seg DG perpendicular to side EF

EG:GF= 1:2

To Find : prove that :

EF²= 3 (DF² - DE²)

Solution:

DG²  = DE²  - EG²

DG² =  DF² - FG²

Equate DG²

DE²  - EG² = DF² - FG²

=> DF²  -  DE² =  FG² - EG²

EG:GF= 1:2

=> FG = 2EG

=> DF²  -  DE² =  (2EG)² - EG²

=> DF²  -  DE² =  4 EG ² - EG²

=> DF²  -  DE² =  3 EG²

EF² = (EG  + FG)²

=> EF² = (EG  + 2EG)²

=> EF² = (3EG)²

=> EF² =9EG²

=> EF² =3.3EG²

=> EF² =3 (DF²  -  DE²)

QED

Hence proved

Learn More:

in the right angke triangle PQR,the perpendicular from R intersects ...

https://brainly.in/question/7719985

1)The perpendicular from the square corner ofa right triangle cuts ...

https://brainly.in/question/13095188

in triangle abc ad is perpendicular to BC and AD square is equal to ...

brainly.in/question/8992597

In a right-angled triangle ABC

brainly.in/question/14634657

Similar questions