Math, asked by Poorva6311, 10 hours ago

In triangle PQR,angle Q=90,angleP=theta,angle R=phi,PR=x+2,QR=x...find(1)underoot x+1cot phi (2)cos theta

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ 1.  \: \sqrt{x + 1} .cot \: Φ \\ 2. \:  \sqrt{x {}^{3}  + x {}^{2} } .tan \: θ \\ 3. \: cos \: θ \\  \\ given :  \\ ∠PQR = 90 \\ ∠RPQ = θ \\ ∠QRP = Φ

so \: in \: △PQR \\ ∠PQR = 90 \\ by \: pythagoras \: theorem \\ we \: get \\  \\ PQ {}^{2} +  QR {}^{2}  = PR {}^{2} \\   \\ x {}^{2}  +  PQ{}^{2}  = (x + 2) {}^{2}  \\  \\  PQ{}^{2}  = (x + 2) {}^{2}  - x {}^{2}  \\  \\  = x {}^{2}  + 4x + 4 - x {}^{2}  \\  \\  = 4x + 4 \\  \\  = 4(x + 1) \\  \\ PQ= 2. \sqrt{x + 1}

so \: now \: then \: considering \\  \sqrt{x + 1} .cot \: Φ \\ \\   =  \frac{PQ}{2}  \times \frac{QR}{PQ}  \\  \\  =  \frac{QR}{2}  \\  \\  \sqrt{x + 1}.cot \:  Φ =  \frac{x}{2}

now \: considering \:  \\  \sqrt{x {}^{3} + x {}^{2}  } .tan \: θ \\  \\  =  \sqrt{x {}^{2}(x + 1) } .tan \: θ \\  \\  = x. \sqrt{x + 1} .tan \: θ \\  \\  = x. \frac{PQ}{2}  \times  \frac{QR}{PQ}  \\  \\  =  \frac{x.x}{2}  \\  \\   \sqrt{x {}^{3}  + x {}^{2} } .tan \:θ =  \frac{x {}^{2} }{2}

similarl y\: then \\ cos \: θ =  \frac{PQ}{PR}  \\  \\ cos \:  θ=  \frac{2. \sqrt{x + 1} }{x + 2}

Attachments:
Similar questions