Math, asked by reenatomsabraham, 10 months ago

in triangle pqr , if p(5,-1) , q(-3,3) ,r(-2,6) are vertices then find the coordinates of the circumcentre and radius of the circumcircle​

Answers

Answered by amirgraveiens
11

In triangle pqr with vertices p(5,-1) , q(-3,3) ,r(-2,6), the coordinates of the circumcentre is o(3,2) and radius of the circumcircle​ is \sqrt{13}

Step-by-step explanation:

Given:

In triangle pqr we have p(5,-1) , q(-3,3) ,r(-2,6).

In the figure given below we have, let say o(l,m) be the centre then

oq = or (radius of the circle)

\sqrt{(l-(-3))^{2}+(m-3)^{2}  } = \sqrt{(l-(-2))^{2}+(m-6)^{2}  }

Cancel square roots from both the sides

Then we have,

(l+3)^{2} +(m-3)^{2} = (l+2)^{2} +(m-6)^{2}

l^{2}+6l+9+m^{2}-6m+  9 = l^{2}+4l+4+m^{2}-12m+36

Now cancelling on both the sides, we get

6l-6m+18 = 4l-12m+40

6l-6m-4l+12m=40-18

2l+6m=22

taking 2 common from left hand side we get

2(l+3m)=22

l+3m=\frac{22}{2}l+3m=11        equation(1)  

Now,

op=or  (radius of the circle)

\sqrt{(l-5)^{2}+(m-(-1))^{2}  } = \sqrt{(l-(-2))^{2}+(m-6)^{2}  }

Cancel square roots from both the sides

Then we have,

(l-5)^{2} +(m+1)^{2} = (l+2)^{2} +(m-6)^{2}

l^{2}-10l+25+m^{2}+2m+1 =  l^{2}+4l+4+m^{2}-12m+36

Now cancelling on both the sides, we get

-10l+2m+26 =  4l-12m+40

-10l+2m-4l+12m=40-26

-14l+14m=14

Taking 14 common on left hand side

14(-l+m)=14

-l+m=1       equation(2)          

Adding  equation (1) and (2) , we get

l-l+3m+m=11+1

4m=12

m=\frac{12}{4}

m=3

Substituting value of m in equation(1)

l+3(3)=11

l=11-9l=2

Hence circumcentre is o(l,m) = o(3,2).

Now with the help centre o(3,2) and the vertex p(5,-1)

radius of the circumcircle = \sqrt{(3-5)^{2}+(2-(-1))^{2}  }

=\sqrt{4+9}

=\sqrt{13}

 

Attachments:
Similar questions