Math, asked by godarpit123, 11 months ago

In triangle PQR, if PQ:QR:PR = 8:15:17, then evaluate
1) cos P . cos R - sin P . sin R

2) tan P - tan R / 1+tan P . tan R
Be marked as brainliest for correct answers

Answers

Answered by Anonymous
43

Solution :

1) CosP CosR - SinP SinR

=> [ ( 8/17 ) × (15/17) ] - [ (15/17) × (8/17) ]

=> 120/289 - 120/289

=> 0

2) [(15/8)-(15/8)]/[1+(8/15)(15/8)]

=> [(225-64)/120]/2

=> 161/120 × 2

=> 161/60

For more, refer to the attachment.

Extra :

  • SinA = P/H
  • CosA = B/H
  • TanA = P/B
  • CosecA = H/P
  • sec A = H/B
  • CotA = B/P
Attachments:
Answered by Nereida
27

\huge\star{\green{\underline{\mathfrak{AnsweR:-}}}}

Given:-

PQ:QR:PR = 8:15:17

To Find:-

  • cos P . cos R - sin P . sin R

  • tan P - tan R / 1+tan P . tan R

\rule{200}2

Solution:-

Given, PQ:QR:PR = 8:15:17

So, PQ=8k, QR=15k, PR=17k.

So,

\hookrightarrow\tt{cos\:P=\dfrac{8}{17}}

\hookrightarrow\tt{cos\:R=\dfrac{15}{17}}

\hookrightarrow\tt{sin\:P=\dfrac{15}{17}}

\hookrightarrow\tt{sin\:R=\dfrac{8}{17}}

\rule{200}2

So answer for first question:-

\mapsto\tt{cos P \times cos R - sin P \times sin R}

\mapsto\tt{\dfrac{8}{17}\times\dfrac{15}{17}-\dfrac{15}{17}\times \dfrac{8}{17}}

\mapsto\tt{\dfrac{120}{289}=\dfrac{120}{289}}

\mapsto\tt{\boxed{\red{O}}}

\rule{200}2

Now,

\hookrightarrow\tt{tan\:P=\dfrac{15}{8}}

\hookrightarrow\tt{tan\:R=\dfrac{8}{15}}

\rule{200}2

So, answer for the answer of 2nd question:-

\mapsto\tt{\dfrac{tan\:P-tan\:R}{1+tan\:P\times tan\:R}}

\mapsto\tt{\dfrac{\dfrac{15}{8}-\dfrac{8}{15}}{1+\bigg(\dfrac{\cancel{15}}{\cancel{8}}\times \dfrac{\cancel{8}}{\cancel{15}}\bigg)}}

\mapsto\tt{\dfrac{\dfrac{15}{8}-\dfrac{8}{15}}{1+(1)}}

\mapsto\tt{\dfrac{\dfrac{225-64}{120}}{2}}

\mapsto\tt{\dfrac{161}{\cancel{120}\:\:60}\times\dfrac{\cancel{2}}{1}}

\mapsto\tt{\boxed{\red{\dfrac{161}{60}}}}

\rule{200}2

\rule{200}2

Some Formulas:-

  • \tt{sin\:\theta=\dfrac{P}{H}}

  • \tt{cos\:\theta=\dfrac{B}{H}}

  • \tt{tan\:\theta=\dfrac{P}{B}}

  • \tt{cosec\:\theta=\dfrac{H}{P}}

  • \tt{sec\:\theta=\dfrac{H}{B}}

  • \tt{cot\:\theta=\dfrac{B}{P}}

\rule{200}4

Similar questions