Math, asked by hdatta2016, 7 months ago

In triangle PQR,PQ=PR and Ext R =130. Then find Ext P +Ext Q

Answers

Answered by KingofStars
2

Answer:

By using the theorem,If two sides of a triangle are equal then the opposite angles to the sides are equal.

⇒ If PQ=PR then ∠Q=∠R

In △PQR,

⇒∠P+∠Q+∠R=180

⇒∠P+∠Q+∠R=180

since ∠Q=∠R=65

(given)

⇒∠P+2×65

=180

⇒∠P=180

−130

=50

∴∠P=50

Step-by-step explanation:

Please mark as brainliest

Answered by Anonymous
115

❥ Question :

In triangle PQR,PQ=PR and Ext R =130. Then find Ext P +Ext Q

❥ Given :

PQ=PR and Ext R =130

❥ To Find :

Ext P +Ext Q

❥ Answer :

Ext P +Ext Q =  230

❥ Calculation :

⇒ If PQ=PR then ∠Q =∠R

⇒∠P+∠Q+∠R = 180°

________________________

If ∠Q =∠R , then ∠Q+∠R = 2∠R (even you can take 2∠Q)

⇒∠P+2∠R = 180°

Ext R =130°, so :

∠P+∠Q =130°

________________________

as ∠Q =∠R ,

∠P+∠Q =130°

(or)

∠P+∠R =130° are same

________________________

∠P+2∠R = ∠P+∠R+∠R

130° + ∠R = 180°

∠R = 180°-130°

∠R = 50°

as ∠Q =∠R,

∠Q = 50°

________________________

∠P+2∠R = 180°

∠P+2×50° = 180°

∠P+100° = 180°

∠P= 180° - 100°

∠P= 80°

________________________

\huge\black \boxed{\bf{\angle P= 80^\circ,\angle Q = 50^\circ,\angle R = 50^\circ}}

________________________

Ext R = ∠P + ∠Q

         = 80° + 50°

         = 130°

Ext P = ∠R + ∠Q

         = 50° + 50°

         = 100°

Ext Q = ∠P + ∠R

          = 80° + 50°

          = 130°

________________________

\large\black \boxed{\bf{Ext\:\:R=130,Ext\:\:P=100,Ext\:\:Q=130}}

________________________

Ext P +Ext Q = 100 + 130

                     = 230

\large\black \boxed{\bf{Ext\:\: P +Ext\:\: Q = 230}}

________________________

Similar questions