In triangle PQR,PQ=PR and Ext R =130. Then find Ext P +Ext Q
Answers
Answer:
By using the theorem,If two sides of a triangle are equal then the opposite angles to the sides are equal.
⇒ If PQ=PR then ∠Q=∠R
In △PQR,
⇒∠P+∠Q+∠R=180
∘
⇒∠P+∠Q+∠R=180
∘
since ∠Q=∠R=65
∘
(given)
⇒∠P+2×65
∘
=180
∘
⇒∠P=180
∘
−130
∘
=50
∘
∴∠P=50
∘
Step-by-step explanation:
Please mark as brainliest
❥ Question :
In triangle PQR,PQ=PR and Ext R =130. Then find Ext P +Ext Q
❥ Given :
PQ=PR and Ext R =130
❥ To Find :
Ext P +Ext Q
❥ Answer :
Ext P +Ext Q = 230
❥ Calculation :
⇒ If PQ=PR then ∠Q =∠R
⇒∠P+∠Q+∠R = 180°
________________________
If ∠Q =∠R , then ∠Q+∠R = 2∠R (even you can take 2∠Q)
⇒∠P+2∠R = 180°
Ext R =130°, so :
∠P+∠Q =130°
________________________
as ∠Q =∠R ,
∠P+∠Q =130°
(or)
∠P+∠R =130° are same
________________________
∠P+2∠R = ∠P+∠R+∠R
130° + ∠R = 180°
∠R = 180°-130°
∠R = 50°
as ∠Q =∠R,
∠Q = 50°
________________________
∠P+2∠R = 180°
∠P+2×50° = 180°
∠P+100° = 180°
∠P= 180° - 100°
∠P= 80°
________________________
________________________
Ext R = ∠P + ∠Q
= 80° + 50°
= 130°
Ext P = ∠R + ∠Q
= 50° + 50°
= 100°
Ext Q = ∠P + ∠R
= 80° + 50°
= 130°
________________________
________________________
Ext P +Ext Q = 100 + 130
= 230
________________________