Math, asked by sahayasajith3, 10 months ago

In triangle PQR, right angled at Q if PR = 41 units and PQ – QR = 31 find sec2R – tan2R.

Answers

Answered by mysticd
7

 Given \: in \: triangle \:PQR , \angle Q = 90\degree

 PR = 41 , \:and \: PQ - QR = 31

 Let \: PQ = x \: and \: QR = y

 PQ - QR = 31 \implies x - y = 31

 \implies x = y + 31 \: --(1)

/* By Pythagoras Theorem */

 PQ^{2} + QR^{2} = PR^{2}

 \implies x^{2} + y^{2} = 41^{2}

 \implies (y + 31)^{2} + y^{2} = 41^{2} \: [ From \: (1) ]

 \implies y^{2} + 61y + 961 + y^{2} = 1681

 \implies 2y^{2} + 62y + 961  -  1681= 0

 \implies 2y^{2} + 62y  - 720= 0

/* Dividing each term by 2 , we get */

 \implies y^{2} + 31y - 360 = 0

/* Splitting the middle term,we get */

 \implies y^{2} + 40y - 9y-360 =0

 \implies y( y + 40 ) - 9( y + 40 ) = 0

 \implies (y+40)(y-9) = 0

 \implies y+40 = 0 \: Or \: y-9= 0

 \implies y = -40 \: Or \: y = 9

/* y should not be negative . */

 \therefore y = 9 \: --(2)

 put \: y = 9 \: in \: equation \: (1) , we \:get

 \implies x = 9 + 31

 \implies x = 40 \: --(3)

 Now , \red{ Value \:of \: Sec 2R - tan 2R }

 = \frac{1}{Cos 2R} - \frac{sin 2R}{cos 2R}

 = \frac{1 - sin 2R}{cos 2R}

 = \frac{ 1 - 2 sin R cos R}{ cos^{2} R - sin^{2} R}

 = \frac{ 1- 2 \times \frac{40}{41} \times \frac{9}{41} }{ \Big ( \frac{9}{41}\Big)^{2} -\Big( \frac{40}{41}\Big)^{2} }

 = \frac{ \frac{1681 - 720}{1681}}{ \frac{81 - 1600}{1681} }

 = \frac{ 961}{-1519}

Therefore.,

  \red{ Value \:of \: Sec 2R - tan 2R }

 \green { =  \frac{- 961}{1519} }

•••♪

Attachments:
Similar questions