in triangle PQR, S is a point on PR such that angle PQS= angle RQS. prove that S is equidistant from PQ and QR
Answers
Given : seg PS ≅ seg PT … (1)
seg SQ ≅ seg TR … (2)
In △PST,
seg PS ≅ seg PT
⇒∠S = ∠T … (isosceles triangle theorem)
In △PST, by angle-sum property,
∠P +∠S + ∠T = 180°
⇒∠P = 180°-∠S -∠T … (3)
Adding (1) and (2), we get:
seg PS +seg SQ ≅seg PT + seg TR
⇒ seg PQ ≅ seg PR
Now, in △PQR,
⇒∠Q = ∠R … (isosceles triangle theorem)
In △PQR, by angle-sum property,
∠P +∠Q + ∠R = 180°
⇒∠P = 180°-∠Q -∠R … (4)
From (3) and (4),
180°- ∠Q -∠R = 180° -∠S -∠T
⇒∠Q + ∠R = ∠S + ∠T
But ∠Q = ∠R and ∠S = ∠T
⇒ 2 ∠Q = 2 ∠S
⇒∠Q = ∠S
⇒∠Q = ∠S and ∠T = ∠R
But these angles are corresponding angles formed by transversals PQ and PR, respectively.
So side ST is parallel to side QR.
Answer:
Given : seg PS ≅ seg PT … (1)
seg SQ ≅ seg TR … (2)
In △PST,
seg PS ≅ seg PT
⇒∠S = ∠T … (isosceles triangle theorem)
In △PST, by angle-sum property,
∠P +∠S + ∠T = 180°
⇒∠P = 180°-∠S -∠T … (3)
Adding (1) and (2), we get:
seg PS +seg SQ ≅seg PT + seg TR
⇒ seg PQ ≅ seg PR
Now, in △PQR,
⇒∠Q = ∠R … (isosceles triangle theorem)
In △PQR, by angle-sum property,
∠P +∠Q + ∠R = 180°
⇒∠P = 180°-∠Q -∠R … (4)
From (3) and (4),
180°- ∠Q -∠R = 180° -∠S -∠T
⇒∠Q + ∠R = ∠S + ∠T
But ∠Q = ∠R and ∠S = ∠T
⇒ 2 ∠Q = 2 ∠S
⇒∠Q = ∠S
⇒∠Q = ∠S and ∠T = ∠R
But these angles are corresponding angles formed by transversals PQ and PR, respectively.
So side ST is parallel to side QR.