In triangle XYX,right angles is at Y ,YZ= x and XZ = 2x .Then determine and
Answers
Answered by
25
Answer:
Step-by-step explanation:
Given ,
In Triangle XYZ , = 90°
YZ = x units , XZ = 2x units
In Triangle XYZ , Angle Y = 90°
Sin X = YZ/XZ
= x/22x
= 1/2
We know that ,sin 30° = 1/2
So , Sin X = sin 30°
=> x = 30°
In Triangles XYZ,
Angle X + Angle Y +Angle Z = 180°.(Angle sum property )
30° +90° + Angle Z = 180°
120° + Angle Z = 180°
Angle Z = 180°-120°
Angle Z = 60°
So ,
= Angle X = 30° and
= Angle Z = 60°
Answered by
22
Answer:
Given that :-
- In triangle XYX,right angles is at Y ,YZ= x and XZ = 2x .
To find :-
- Then determine angle
- YXZ and YZX.
Solution:-
Sin x = opposite side of x/hypotenuse
⇒ x/2x = 1/2
Sin x = 1/2 = Sin 30°
⇒ x = 30° or ∠ YXZ = 30°
Cos Z = Adjacent side of z/hypotenuse
⇒ x/2x = 1/2
⇒ Cos Z = 1/2 = Cos 60°
Answer :- Z = 60° = ∠ YZX = 60°
Similar questions
English,
6 months ago
Political Science,
6 months ago
Math,
6 months ago
Economy,
1 year ago
Physics,
1 year ago