Math, asked by fareehassq, 9 months ago

In triangle XYZ,M and N are midpoints of XY and XZ respectively P and Q are midpoints of XM and XN if PQ=2.8cm find the length of YZ

Answers

Answered by MaheswariS
26

\underline{\textsf{Given:}}

\textsf{In triangle XYZ,}

\textsf{M and N are midpoints of XY and XZ}

\textsf{P and Q are midpoints of XM and XN and PQ=2.8cm}

\underline{\textsf{To find:}}

\textsf{Length of YZ}

\underline{\textsf{Solution:}}

\underline{\textsf{Concept used:}}

\boxed{\begin{minipage}{9cm}$\;\;\\\textsf{A line segment joining midpoints of two sides of a triangle is}\\\\\textsf{parallel to the third side and half of it}\\$\end{minipage}}

\mathsf{In\;\triangle\,XMN}

\mathsf{PQ{\parallel}MN\;\;and}

\mathsf{PQ=\dfrac{1}{2}{\times}MN}

\mathsf{2.8=\dfrac{1}{2}{\times}MN}

\implies\mathsf{MN=2{\times}2.8}

\implies\boxed{\mathsf{MN=5.6\,cm}}

\mathsf{In\;\triangle\,XYZ}

\mathsf{MN{\parallel}YZ\;\;and}

\mathsf{MN=\dfrac{1}{2}{\times}YZ}

\mathsf{5.6=\dfrac{1}{2}{\times}YZ}

\implies\mathsf{YZ=2{\times}5.6}

\therefore\boxed{\mathsf{YZ=11.2\,cm}}

\underline{\textsf{Find more:}}

Attachments:
Answered by Swara170208
1

Answer:

YZ = 11.2

Step-by-step explanation:

In triangle XMN,

P is the midpoint of XM

Q is the midpoint of XN

PQ//MN and PQ = 1/2 MN ...by midpoint theorem

MN = 2PQ

MN = 2(2.8)

MN = 5.6 cm

In triangle XYZ,

M is the midpoint of XY

N is the midpoint of XZ

MN//YZ and MN = 1/2 YZ ...by midpoint theorem

YZ = 2MN

YZ = 2(5.6)

YZ = 11.2 cm

Similar questions