In TriangleABC, internal bisector of Angle B and angle C meet at P and external bisector of Angle B and angle C meet at Q prove that angle B P C + Angle B Q C is equal to 180 degree
Answers
Answered by
2
Answer:
From the figure, it shows that
∠ACB and ∠QCB form a linear pair,
So, ∠ACB + ∠QCB = 180º
=> ∠ACB/2 + ∠QCB/2 = 180º /2
=> ∠ACB/2 + ∠QCB/2 = 90º
Again since PC and QC are the angle bisectors
=> ∠PCB + ∠BCQ = 90º
=> ∠PCQ = 90º
Similarlry,
∠PBQ = 90º
In qradrilateral BPCQ,
Sum of all four angles = 360º
=> ∠BPC + ∠PCQ + ∠CQB + ∠QBP = 360º
=> ∠BPC + ∠BQC + 180º = 360º
=> ∠BPC + ∠BQC = 360º - 180º
=> ∠BPC + ∠BQC = 180º
=> ∠P = ∠Q = 90º [Since ∠PCQ = ∠PBQ = 90º]
Similar questions