Math, asked by devansh1446, 1 year ago

In triangleABC, triangleABC similar to triangle ADE, AD = 7.6cm., AE = 7.2cm.,
BE=4.2cm and BC =8.4cm.. Find DE.​

Attachments:

Answers

Answered by grahamdon2000
4

Answer:

5.6cm

Step-by-step explanation:

Since triangle ABC similar to triangle ADE,

Given : AD= 7.6 cm, AE= 7.2 cm, BE= 4.2 cm, BC= 8.4 cm.

In ∆ADE and ∆ABC

∠A = ∠A (COMMON)

∠ADE = ∠ABC (GIVEN)

∆ADE~∆ABC (AA Similarity)

AD/AB = DE /BC

[Ratios of the corresponding sides of the similar triangles are equal]

AD/(AE+BE) = DE/BC

7.6 / (7.2+4.2)= DE/8.4

7.6 /11.4 = DE/8.4

DE= (7.6 × 8.4) /11.4

DE= (7.6×8.4)/11.4

DE = 63.84/11.4= 5.6 cm

Hence, ANS DE= 5.6cm

Answered by viji18net
2

Answer:

Given : AD= 7.6 cm, AE= 7.2 cm, BE= 4.2 cm, BC= 8.4 cm.

In ∆ADE and ∆ABC

∠A = ∠A (COMMON)

∠ADE = ∠ABC (GIVEN)

∆ADE~∆ABC (AA Similarity)

AD/AB = DE /BC

[Ratios of the corresponding sides of the similar triangles are equal]

AD/(AE+BE) = DE/BC

7.6 / (7.2+4.2)= DE/8.4

7.6 /11.4 = DE/8.4

DE= (7.6 × 8.4) /11.4

DE= (7.6×8.4)/11.4

DE = 63.84/11.4= 5.6 cm

Hence, DE= 5.6 cm

Similar questions