Geography, asked by akshaya69, 1 year ago

IN victor Meyers experiment 0.23g Of a volatile solute displaced air which measures 112ml at NTP. calculate the vapour density and molecular weight of substance.

a. 23.01,46.02
b. 25.2,37.7
c. 52.3,44.2
d. 46.02,23.01​

Answers

Answered by ayushraj45
0

Answer:

The right answer is option no c

Answered by Mysterioushine
16

 \huge {\bold {\underline{ \underline{Given : - }}}}

  • Mass of volatile solute is 0.23g
  • Volume of the gas is 112ml at NTP

 \huge{ \bold {\underline {\underline{To \: find : - }}}}

  • Vapour density and Molecular weight of the gas

 \huge{ \bold {\underline {\underline{Solution : - }}}}

We are given that ,

  • Volume = 112 ml = 0.112 litres
  • Mass = 0.23 g
  • Pressure = 1 atm (NTP conditions)
  • Temperature = 273K (NTP conditions)
  • R = 0.0821 lit.atm.mol⁻¹.K⁻¹

Let Molecular weight be 'W'

From ideal gas equation ,

 \large  \underline{\bold {\boxed{ \bigstar{ | PV = nRT | }}}}

Where ,

  • P is pressure of the gas
  • V is Volume of the gas
  • n is Number of moles
  • R is universal gas constant
  • T is temperature

Number of moles of the given element or gas is given by ,

 \large  {\rm {\underline{ \bold {\boxed{{ n =  \frac{given \: weight}{molecular \:  \: weight  }  }}}}}}

 :  \implies \: n \:  =  \frac{0.23}{W}  \rightarrow \: eq(1)

Now from ideal gas equation ,

  :  \implies \: (1)(0.112) =  \big( \frac{0.23}{W} \big)(0.0821)(273) \\  \\  :  \implies \: 0.112(W) = (0.23)(0.0821)(273) \\  \\   : \implies \: W \:  =  \bigg(  \frac{(0.23)(0.0821)(273)}{0.112}  \bigg) \\  \\   : \implies \:W =  \bigg( \frac{5.155059}{0.112}  \bigg) \\  \\   : \implies {\bold {\boxed{ \pink {W \:    =  46.02 \: g}}}}

Relation between Molecular weight (W) and Vapour density(VD) is given by ,

 \large \underline {\bold {\boxed{ \bigstar {  | W = 2 \times VD | }}}}

Where ,

  • W is Molecular weight
  • VD is vapour density

 :  \implies \: 46.02 = 2 \times VD \\  \\: \implies \: VD =  \bigg( \frac{46.02}{2}  \bigg) \\  \\   : \implies {\bold {\boxed {\pink{ VD = 23.01}}}}

 \dagger \rm \: Hence , \: option(A) \: is \: correct

\huge{\bold{\underline{\underline{Additional\:Info:-}}}}

❈ VALUES OF R IN DIFFERENT UNITS :-

  • R = 0.0821 lit.atm.mol⁻¹K⁻¹
  • R = 8.314 × 10⁷ erg.mol⁻¹.K⁻¹
  • R = 1.987 cal.mol⁻¹.K⁻¹
  • R = 8.314 J.mol⁻¹.K⁻¹
Similar questions