Math, asked by Anonymous, 1 year ago

In what direction should a line be drawn through the point
(1,2), so that its point of intersection with the line x+y=4
is at a distance root 6/3 from the given point.​

Answers

Answered by Anonymous
27

\Huge{\underline{\underline{\mathfrak{ Solution \colon }}}}

Equation of a line passing through (x1,y1) and making an angle θ is x−x1cosθ=y−y1sinθ=r where r is the distance of the point from the given line.

\bold \: \underline\mathfrak{Step \: by \: step \: explanation:}

Step 1:

Let the required line make an angle θ with x - axis.

  :⟹\frac{\text{x - 1}}{ \cosθ }  =  \frac{ \text{y - 2}}{ \sin  θ  }  =  \frac{ \sqrt{6} }{3}

 : ⟹  \text{x} =  \frac{ \sqrt{6 } \cos θ  }{ 3}  + 1

  :⟹ \text{y} =  \frac{ \sqrt{6}  \sin  θ}{3}  + 2

___________________________

Step 2 :

This points lies on the line x + y = 4

 : ⟹  \frac{ \sqrt{6 } \cos θ  }{ 3}  + 1 +  \frac{ \sqrt{6}  \sinθ}{3}  + 2 = 4

 : ⟹  \frac{ \sqrt{6 } \cos θ  }{ 3}  +  \frac{ \sqrt{6}  \sinθ}{3}    = 1

  : ⟹  \sqrt{6}  \ \cos(?) θ +  \sqrt{6}  \sinθ

 : ⟹ \cosθ +  \sinθ  =  \frac{3}{ \sqrt{6} }

___________________________

Step 3 :

Squaring on both sides

 : ⟹  {(cos  θ +  \sinθ) }^{2}  =  \frac{3}{2}

 \text{But sin }\: 2θ+cos2θ=1

__________________________

∴2sinθcosθ=32−1

⇒ 2sinθcosθ=sin2θ

∴sin2θ=12

⇒ 2θ=π6 or 30∘

∴θ=15∘ or 90∘−15∘=75∘

Hence the required line is in the

positive direction of either 15∘ or 75∘ to the x axis.

__________________________________

Similar questions