Math, asked by elentika, 10 months ago

In what ratio does the point (-4,6) divide the line segment joining the point A(-6,10) and B(3,-8)?

Answers

Answered by BloomingBud
32

Let point P(-4,6) divides the line segment joining the points A(-6,10) and B(3,-8) in the ratio \red{ m_{1} : m_{2} }. (See in the attached images Figure 1.)

Now,

By using section formula, we will get,

\boxed{\sf (-4,6)=( \frac{3m_{1}-6m_{2}}{m_{1}+m_{2}} ,\frac{-8m_{1}+10m_{2}}{m_{1}+m_{2}} )}

Now,

By equating x-coordinate from both sides, we get,

(-4)=( \frac{3m_{1}-6m_{2}}{m_{1}+m_{2}} )

\implies -4(m_{1}+m_{2}) = 3m_{1}-6m_{2}

\implies -4m_{1}-4m_{2} = 3m_{1} -6m_{2}

\implies -4m_{1} - 3m_{1} = -6m_{2} +4m_{2}

[Taking (3m₁) to LHS and (-4m₂) to RHS ]

\implies -7m_{1}=-2m_{2}

\implies \boxed{\frac{m_{1}}{m_{2}}=\frac{2}{7}}

Hence,

\red{m_{1} : m_{2}} = 2:7

- - -

Verification:

By equating the y-coordinate from both sides, LHS and RHS, we will get,

\boxed{6 = \frac{-8m_{1}+10m_{2}}{m_{1}+m_{2}}}

[Now, by dividing the numerator and the denominator of RHS by m₂]

\boxed{6 = \frac{-8\frac{m_{1}}{m_{2}}+10}{\frac{m_{1}}{m_{2}}+1}}

And, putting the value of m₁:m₂ = 2:7 as we got it from above, we will get,

\boxed{6 = \frac{-8\frac{2}{7}+10}{\frac{2}{7}+1}}

6 = \frac{-16+70}{2+7} = \frac{54}{9} = \boxed{6}

Hence,

The point(-4,6) divides the line segment joining the point A(-6,10) and B(3,-8) in the ratio 2:7.

\huge{\boxed{\tt Another\ method}}

Let point P(-4,6) divides the line segment joining the points A(-6,10) and B(3,-8) in the ratio \red{ k : 1 }. (See in the attached images Figure 2.)

By using the section formula, we get,

\boxed{\sf (-4,6)=( \frac{3(k)-6(1)}{k+1} ,\frac{-8(k)+10(1)}{k+1} )}

(-4,6)=( \frac{3k-6}{k+1} ,\frac{-8k+10}{k+1} )

Now, on equating x-coordinate from both sides, i.e RHS and LHS, we will get,

-4 = \frac{3k-6}{k+1}

\implies -4(k+1)=3k-6

\implies -4k - 4 = 3k - 6

\implies 3k+4k = 6-4

\implies 7k = 2

\implies \boxed{k=\frac{2}{7}}

Verification:

Taking y-coordinate from section formula, we get,

\boxed{6 = \frac{-8k+10}{k+1}}

Now, putting the value of k = \frac{2}{7} , we will get,

\boxed{6 = \frac{-8(\frac{2}{7})+10}{\frac{2}{7}+1}}

6 = \frac{-16+70}{2+7} = \frac{54}{9} = \boxed{6}

Therefore,

The point(-4,6) divides the line segment joining the point A(-6,10) and B(3,-8) in the ratio 2:7.

. . .

\boxed{\tt{Section\ formula}}

Internal DIvision of a Line Segment.

Let A(x₁, y₁) and B(x₂, y₂) are two points and P(x,y) is a point on the line segment joining A and B such that AP: BP = m₁: m₂, then point P is said to divide the line segment AB internally in ratio m₁: m₂.

[See figure 3]

Coordinates of point P are given by

\boxed{(\frac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}},\frac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}})}

This formula is known as Section formula for internal division.

Attachments:
Answered by BrainlyEmpire
54

{\huge{\underline{\boxed{\mathbb{\blue{A}\green{n}\purple{s}\blue{w}\green{e}\purple{R::}}}}}}

.

.

.

.ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ_________________________________________________________ㅤㅤㅤㅤ

Let P(-4,6) divided AB in the ratio k : 1.

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Here, (x₁,y₁) = (-6,10), (x₂,y₂) = (3,8), m = k, n = 1.

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Section formula:

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Coordinates of P = (3k - 6/k + 1, -8k + 4/k + 1)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⇒ (-4,6) = (3k - 6/k + 1, -8k + 4/k + 1).

So,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⇒ -4 = (3k - 6)/(k + 1)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⇒ -4(k + 1) = 3k - 6

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⇒ -4k - 4 = 3k - 6

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⇒ -4k - 3k = -6 + 4

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⇒ -7k = -2

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⇒ k = 2/7.

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Therefore, the ratio is 2:7.ㅤㅤㅤㅤㅤㅤㅤ______________________________ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Similar questions