Math, asked by Anonymous, 1 month ago

IN WHAT RATIO DOES THE POINT (-4,6) DIVIDE THE LINE SEGMENT AB JOINING THE POINTS A(-6,10) AND B(3,-8) ?
Quality answerers:-
@Itzheartcracker.
@CopyThat.
@TakenName
@Stars.
@Moderators.

Answers

Answered by Itzheartcracer
3

Given :-

Point (-4,6)

A (-6,10)

B(3,-8)

To Find :-

Ratio

Solution :-

Using section formula

\sf (x,y) =\bigg(\dfrac{mx_2+nx_1}{m+n},\dfrac{mx_1+nx_2}{m+n}\bigg)

\sf (-4,6)=\bigg(\dfrac{m(3)+n(-6)}{m+n},\dfrac{m(-8)+n(10)}{m+n}\bigg)

Let

\sf -4=\dfrac{m(3)+n(-6)}{m+n}(..i)

\sf -4(m)+-4(n)=3m+(-6n)

\sf -4m-4n=3m-6n

\sf -4m-3m=-6n+4n

\sf -7m=-2n

\sf 7m=2n

\sf\dfrac{7}{2}=\dfrac{m}{n}

\sf 7:2=m:n

Answered by CopyThat
7

Answer:

\bold{m_{1}:m_{2}=2:7\;is\;the\;required\;ratio.}

Step-by-step explanation:

\bold{Let\;(-4,6)\;divide\;AB\;internally\;in\;the\;ratio\;m_1:m_2.}

\bold{Using\;the\;section\;formuala\;we\;get:}

\bold{(-4,6)={\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_1+m_2} ;\dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_1+m_2} } }

\bold{-4,6=\dfrac{m_{1}(3)+m_{2}(-6)}{m_{1}+m_{2}};\dfrac{m_{1}(-8)+m_{2}(10)}{m_{1}+m_{2}}  }

\bold{-4,6=\dfrac{3m_{1}-6m_{2}}{m_{1}+m_{2}};\dfrac{-8m_{1}+10m_{2}}{m_{1}+m_{2}}  }

\bold{On\;comparing\;L.H.S\;to\;R.H.S\;we\;get:}

\bold{-4=\dfrac{3m_{1}-6m_{2}}{m_{1}+m_{2}} }

\bold{Cross\;multiplying\;we\;get:}

\bold{-4m_{1}-4m_{2}=3m_{1}-6m_{2}}

\bold{-4m_{1}-3m_{1}=-6m_{2}+4m_{2}}

\bold{-7m_{1}=-2m_{2}}

\therefore\bold{m_{1}:m_{2}=2:7}

Similar questions