Math, asked by manikandanperumal08, 2 months ago

in what ratio x-axis divide the Join of (2,-4),(-3,6) ? find the point of intersection also​

Answers

Answered by xSoyaibImtiazAhmedx
6

Let,

  • x - axis divide the join of (2,-4),(-3,6) in {m_1\: :\:m_2} ratio .

  • and the point of intersection be→ P(x,0)

So,

(x,0) = ( \frac{m_2 \times 2 + m_1 \times ( - 3)}{m_1\:  + \:m_2}, \frac{m_2 \times ( - 4) + m_1 \times 6}{m_1\:  + \:m_2}  )

 \bold{ \rightarrow(x,0) = ( \frac{2m_2     - 3m_1 }{m_1\:  + \:m_2}, \frac{ - 4m_2 + 6m_1 }{m_1\:  + \:m_2}  )}

  • That means ,

 \bold{ \rightarrow \: 0 = \frac{ - 4m_2 + 6m_1 }{m_1\:  + \:m_2} }

 \rightarrow \: 0 =  - 4m_2 + 6m_1

 \bold{\rightarrow \:  4m_2 =    6m_1 }

 \rightarrow \:  \bold{\frac{m_1}{m_2} \:  =  \frac{4}{6} }

 \rightarrow \bold{ \boxed {\bold{ \: m_1\: :\:m_2 \:  = 4 : 6}}}

 \\  \\  \\  \large \frak  {\underbrace { \color{blue}{\bold{So , the \:  \:  ratio  \:  \: is  \:  \:  \: 4:6}}}}

  \large\frak{And}

 \large \color{red} \bold{ x =  \frac{2m_2     - 3m_1 }{m_1\:  + \:m_2}}

 \bold{ \rightarrow} \:  \large \color{red} \bold{ x =  \frac{2 \times 6- 3 \times 4 }{4\:  + \:6}}

\bold{ \rightarrow} \:  \large \color{red} \bold{ x =  \frac{12 \ - 12 }{10}}

\bold{ \rightarrow} \:  \large \color{red} \bold{ x =  \frac{0}{10}}

\bold{ \rightarrow} \:  \large \color{green} \bold{ x =  0}

 \large{ \boxed { \bf{ \bold{So, \:  point  \: of  \: intersection  \:  \: P(x,0) \: → \:   (0,0)}}}}

Similar questions