In what ratio x – axis divide the line segment joining the points (3,-4),and (2,6).
Answers
Answer:
QƲЄƧƬƖƠƝ
The base and altitude of a triangular garden is 100m and 25m respectively. Find the cost of landscaping the garden at the rate of $ 10 per m².
\bf {\underline {\underline{✤ ƛƝƧƜЄƦ}}}
✤ƛƝƧƜЄƦ
➡Cost of landscaping the garden is $12500
\bf {\underline {\underline{✤ ƓƖƔЄƝ}}}
✤ƓƖƔЄƝ
Base of triangular garden = 100m
Altitude of triangular garden = 25m
\bf {\underline {\underline{✤ ƬƠ \: \: ƇƛLƇƲLƛƬЄ}}}
✤ƬƠƇƛLƇƲLƛƬЄ
Cost of landscaping the garden at the rate of $ 10 per m²
\bf {\underline {\underline{✤ ƑƠƦMƲLƛ \: \: ƬƠ \: ƁЄ \: \: ƲƧЄƊ}}}
✤ƑƠƦMƲLƛƬƠƁЄƲƧЄƊ
Area of Triangle
\bf \implies \blue{ \frac{1}{2} \times base \times height}⟹
2
1
×base×height
\bf {\underline {\underline{✤ SƠLƲƬƖƠƝ}}}
✤SƠLƲƬƖƠƝ
Base of triangular garden = 100m
Altitude of triangular garden = 25m
\bf Area \: of △ = \frac{1}{2} \times base \times heightAreaof△=
2
1
×base×height
\bf\implies \frac{1}{2} \times 100 \times 25⟹
2
1
×100×25
\bf\implies 1 \times 50 \times 25⟹1×50×25
\bf\implies 1250 {m}^{2}⟹1250m
2
Total Cost of landscaping the garden at the rate of $ 10 per m² is :-
\bf \implies area \: of \: garden \times rate \: of \: landscaping⟹areaofgarden×rateoflandscaping
\bf \implies 1250 \times 10⟹1250×10
\bf \implies 12500⟹12500
Therefore, Total Cost of landscaping the garden at the rate of 10\: per\: m²\: is10perm²is12500.
Step-by-step explanation:
ok mark as brain list
Answer:
FL dq g dq dq gk f tk fa fa fa tk dq da