Math, asked by shivanssingh2005, 4 months ago

In what ratio x – axis divide the line segment joining the points (3,-4),and (2,6).​

Answers

Answered by Anonymous
1

Answer:

QƲЄƧƬƖƠƝ

The base and altitude of a triangular garden is 100m and 25m respectively. Find the cost of landscaping the garden at the rate of $ 10 per m².

\bf {\underline {\underline{✤ ƛƝƧƜЄƦ}}}

✤ƛƝƧƜЄƦ

➡Cost of landscaping the garden is $12500

\bf {\underline {\underline{✤ ƓƖƔЄƝ}}}

✤ƓƖƔЄƝ

Base of triangular garden = 100m

Altitude of triangular garden = 25m

\bf {\underline {\underline{✤ ƬƠ \: \: ƇƛLƇƲLƛƬЄ}}}

✤ƬƠƇƛLƇƲLƛƬЄ

Cost of landscaping the garden at the rate of $ 10 per m²

\bf {\underline {\underline{✤ ƑƠƦMƲLƛ \: \: ƬƠ \: ƁЄ \: \: ƲƧЄƊ}}}

✤ƑƠƦMƲLƛƬƠƁЄƲƧЄƊ

Area of Triangle

\bf \implies \blue{ \frac{1}{2} \times base \times height}⟹

2

1

×base×height

\bf {\underline {\underline{✤ SƠLƲƬƖƠƝ}}}

✤SƠLƲƬƖƠƝ

Base of triangular garden = 100m

Altitude of triangular garden = 25m

\bf Area \: of △ = \frac{1}{2} \times base \times heightAreaof△=

2

1

×base×height

\bf\implies \frac{1}{2} \times 100 \times 25⟹

2

1

×100×25

\bf\implies 1 \times 50 \times 25⟹1×50×25

\bf\implies 1250 {m}^{2}⟹1250m

2

Total Cost of landscaping the garden at the rate of $ 10 per m² is :-

\bf \implies area \: of \: garden \times rate \: of \: landscaping⟹areaofgarden×rateoflandscaping

\bf \implies 1250 \times 10⟹1250×10

\bf \implies 12500⟹12500

Therefore, Total Cost of landscaping the garden at the rate of 10\: per\: m²\: is10perm²is12500.

Step-by-step explanation:

ok mark as brain list

Answered by khedekarkaran15
0

Answer:

FL dq g dq dq gk f tk fa fa fa tk dq da

Similar questions