Math, asked by Class8student, 1 year ago

In what time will ₹64000 amount to ₹68921 at 5% per annum interest being compounded half yearly?

Answers

Answered by Anonymous
16

In 1½ Years interest being compounded half yearly.

Given:

  • Principal = 64000
  • Amount = ₹ 68921
  • Rate = 5%

Explanation:

Suppose the Time be x

FORMULA

 \circ {\boxed{\underline{\sf{ Amount = P \left( 1 + \dfrac{r}{100} \right)^n }}}} \\

Where as:

  • P = Principal
  • r = Rate
  • n = Time

According to Question,

 \\ \colon\implies{\sf{ 68921 = 64000 \left( 1 + \dfrac{5}{100} \right)^x }} \\ \\ \\ \colon\implies{\sf{ 68921 = 64000 \left( \cancel{ \dfrac{105}{100} } \right) ^x }} \\ \\ \\ \colon\implies{\sf{68921 = 64000 \left( \dfrac{21}{20} \right) ^x }} \\ \\ \\ \colon\implies{\sf{ 68921 =  \cancel{6400} \times \dfrac{21x}{ \cancel{20}  } }} \\ \\ \\ \colon\implies{\sf{ 68921 = 3200 \times 21x }} \\ \\ \\ \colon\implies{\sf{ \dfrac{68921}{ 3200 \times 21 } = x }} \\ \\ \\ \colon\implies{\boxed{\mathfrak\pink{ x = 1 \dfrac{1}{2}  }}} \\

Hence,

  • Time taken will be 1½ Years .
Similar questions