Math, asked by Anonymous, 1 month ago

In what time will a sum of money double itself at 15% per annum?


✎kindly answer need well explained
✎ not goögle copied or spam
otherwise I will report ur 20+ ans​

Answers

Answered by Anonymous
12

Answer:

\huge\mathfrak\red{question}

  • In what time will a sum of money double itself at 15% per annum?

\huge\mathfrak\red{answer}

  • principal = P
  • amount = 2P

therefore,

simple interest= amount - principal = P

rate of interest 15% per annum

  • time = 100 × S.I / P × 15
  • 100 × P / P × 15 = 20/3 years
  • hence time is 6 year 8 months

Answered by ItzMeMukku
2

\bold\color{blue}{FORMULA\: TO\: BE \:IMPLEMENTED}

\\

\underline{\boxed{\sf\purple{Principal = p}}}

\\

\underline{\boxed{\sf\purple{Rate\: of \:interest = r}}}

\\

\underline{\boxed{\sf\purple{Time = t years}}}

\\

\bold\color{blue}{Then}

\\

\rm \: Interest = I = \frac{prt}{100}

\\

\bold\color{blue}{TO\: DETERMINE}

\\

In what time a sum of money double itself at 15% per annum

\\

\bold\color{blue}{CALCULATION}

\\

\underline{\boxed{\sf\purple{Principal = p}}}

\\

\underline{\boxed{\sf\purple{Rate\: of \:interest = r}}}

\\

\underline{\boxed{\sf\purple{Time = t years}}}

\\

\small\textbf\color{red}{Amount after t years = 2p}

\\

\small\textbf\color{red}{Interest = 2p - p = p}

\\

\underline\bold{So}

\\

\rm p =\frac{p \times 15 \times t}{100}

\\

\implies \rm\: t = \frac{100}{15}

\\

\implies\rm \: t = \frac{20}{3}

\\

\implies\rm\: t = 6 \frac{2}{3}

\\

\underline\bold{RESULT}

\\

\rm\color{red} \: 6 \frac{2}{3} \: \: years = 6 \: years \: 8 \: months

\\

Thankyou :)

Similar questions