Math, asked by javedakhtar015201, 4 months ago

in what time will rs 2500 amount to rs2809 at 12% p. a compounded semi anually? ​

Answers

Answered by jaidansari248
4

Answer:

principal(p)  = \: rs \: 2500 \\ amount(a) =  \: rs \: 2809  \\ rate(r) = 12\% \: per \: annum \\ convert \: rate \: in \: semi \: annually \\ rate =  \frac{12}{2} \% = 6\% \: per \: semi \: annually \\ let \: the \: time \: in \: annually \: be \: t \\ then \\ convert \: time \: in \: semi \: annually \\ time = 2t

a = p \times (1 +  \frac{r}{100} ) {}^{2t}  \\ 2809 = 2500 \times (1 +  \frac{6}{100} ) {}^{2t }  \\ (1 +  \frac{3}{50} ) {}^{2t}  =  \frac{2809}{2500}  \\ ( \frac{50 + 3}{50} ) {}^{2t}  = ( \frac{53}{50} ) {}^{2}  \\  (\frac{53}{50})  {}^{2t}  =  (\frac{53}{50} ) {}^{2}  \\ base \: are \: same \: so \\ 2t = 2 \\ t = 1 \: year = 2 \: semi \: year

Similar questions