Math, asked by mansibhatia, 1 year ago

in what time will rupees 4400 become Rupees 4576 at 8% per annum interest compounded half yearly​

Answers

Answered by BrainlyConqueror0901
21

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Time=\frac{1}{2}\:years}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies Amount( A) = 4576 \: rupees \\  \\  \implies Principal(p) = 4400 \: rupees \\  \\  \implies Rate = 8\%\\  \\ \underline \bold{To \: Find : } \\  \implies Time = ?

• According to given question :

 \bold{Using \: formula \: of \: Compounded \: half \: yearly : } \\  \implies A= p(1 +  \frac{ \frac{r}{2} }{100} )^{2t}  \\  \\  \implies 4576 = 4400 \times (1 +  \frac{ \frac{8}{2} }{100} )^{2t}  \\  \\  \implies  \frac{4576}{4400}  = (1 +  \frac{1}{25} ) ^{2t}  \\  \\  \implies 1.04 =  (\frac{25 + 1}{25}) ^{2t}  \\  \\ \implies 1.04 = (1.04)^{2t}  \\  \\  \bold{Both \: side \: bases \: are \: equal }\\ \bold{So ,\: powers \: are \: also \: equal}  \\  \implies 1 = 2t \\  \\   \bold{\implies t =  \frac{1}{2}  \: years}

Answered by Anonymous
8

 \bold{using \: formula \: of \: compounded \: half \: yearly : } \\  \implies a = p(1 +  \frac{ \frac{r}{2} }{100} )^{2t}  \\  \\  \implies 4576 = 4400 \times (1 +  \frac{ \frac{8}{2} }{100} )^{2t}  \\  \\  \implies  \frac{4576}{4400}  = (1 +  \frac{1}{25} ) ^{2t}  \\  \\  \implies 1.04 =  (\frac{25 + 1}{25}) ^{2t}  \\  \\ \implies 1.04 = (1.04)^{2t}  \\  \\  \bold{both \: side \: bases \: are \: equal }\\ \bold{so \: powers \: are \: also \: equal}  \\  \implies 1 = 2t \\  \\   \bold{\implies t =  \frac{1}{2}  \: years}

Similar questions