in xyz, <X =90,<z= 45 ,<y= 45 and xy5 root2 them find zy
Answers
Answer:
In ∆XYZ,
angle Y=90°........ given
By Pythagoras' theorem,
\begin{gathered}{xy}^{2} + {yz}^{2} = x {z}^{2} \\ \\ {5}^{2} + y {z}^{2} = (5 \sqrt{2} {) }^{2} \\ \\ 25 + y {z }^{2} = 25 \times 2 \\ \\ 25+ y {z}^{2} = 50 \\ \\ y {z}^{2} = 50 - 25 \\ \\ y {z}^{2} = 25 \\ \\ yz = 5\end{gathered}
xy
2
+yz
2
=xz
2
5
2
+yz
2
=(5
2
)
2
25+yz
2
=25×2
25+yz
2
=50
yz
2
=50−25
yz
2
=25
yz=5
So in this ∆XYZ
Side XY= Side YZ
angle X= angle Z....................by isosceles triangle theorem ......1
Thus,. angle X = angle Z = x...............say
angle X + angle Y + angle Z = 180°................angle sum property
of triangle.
x + 90 + x = 180
x + x= 180-90
2x = 90
x =90/2
x=45°
angle X = angle Z = 45°
angle Y = 90°
ANS:-. The angles of the given triangle are
angle Y = 90°
angle X = 45°
angle Z = 45°